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ABSTRACT

The introduction of complex Navier-Stokes equations shows that

steady axisymmetric motions of viscous incompressible fluids around

conical surfaces can be expressed in terms of the corresponding

general solution of the Stokes equations of slow motions. The latter

integration is accomplished with the aid of slow-motion eigenfunctions

with integral eigenvalues for infinite plates and semi-infinite needles

and with generally complex eigenvalues for cones and conical corners.

The eigenvalues and eigenmotions obtained resemble the corresponding

eigenvalues and eigenmotions of the analogous flows past dihedral

angles. In particular, the existence of critical and branching eigen-

values reveals that laminar flows past conical surfaces depend on the

cone angle in a nonanalytic manner. The investigations include a note

on diffusor and jet flows.
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1. Introduction

Slow motions around the edge of a dihedral angle, which are governed

by the linear Stokes equations, have been extensively studied in [4, 6,

and 10]. By means of "complex Navier-Stokes" equations introduced in [10]

it became possible to reveal four fundamental properties of viscous

fluid motions which are important for the general theory of the Navier-

Stokes equations:

(I) The solutions of the Navier-Stokes equations are essentially

representable by "slow-motion eigenfunctions."

(II) Flow patterns of laminar motions which are "attached" or "separated"

at a sharp or blunt edge of an obstacle can be studied in an exact

manner.

(III) In contrast to inviscid fluid motions viscous fluid flows around

obstacles exhibit "critical body parameters" which prohibit analytic

parameter expansions without rigorous justification.

(IV) The Navier-Stokes equations yield solutions which represent "regular

motions" with bounded velocities and pressures,and other solutions

which describe "singular motions" with infinite pressures and finite

or infinite velocities.

The present paper confirms the properties (I) through (IV) by investi-

gating the analogous problem of viscous fluid motions around a conical

surface. For the sake of simplicity, the derivations will be confined to

axisymmetric flows which depend on two variables. The general problem

considered includes as a special case the symmetric flow past a semi-

infinite needle which has been~briefly studied in [9].
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2. Motions Around Conical Surfaces

Consider the steady axisymmetric motion of a viscous incompressible

fluid around a conical surface (Figs. I and 2), the solid angle of which

may be called'"cone angle" 2a (0 •! 2a < 27). The complementary angle

2ý(= 27r - 2a) is called the "corner angle" of the conical surface. For

2z = 0 the conical surface degenerates to a semi-infinite thin needle

and for 2o' = Tr to an infinite flat plate. For 0 < 2 a < TT the conical

surface represents a cone and for 0 < 2ý < 7r a conical corner.

Let (r,e) denote a polar system in the meridian plane of the axi-

symmetric motion such that e = +- designates the solid axis of the

conical surface (Fig. 1). Furthermore, let (u,v) represent the corre-

sponding radial and tangential velocity components of the motion with

the variable pressure p. If r,u,v, and p are reduced to dimensionless

variables by appropriate flow parameters which are characteristic for

the motions considered (see, for instance,[II]), then the "real Navier-

Stokes equations" can be written in the form:

1 (rU)r + 1 u + coto - 2v) - L(v + u) = p + uu

r (u v

I (rv)rr + 1 1 (v cote)e + 2 u = Ir- 2 r-rP UVr

+_ (v + u) (2)

(ur 2 sinO)r + (vr sin0)0 = 0. (3)

2
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The latter, continuity equation, leads to the introduction of the

stream function 4 which is defined by

u 2 I__ v 1 (4)
r sine r sine r

As was shown in [10] it is advantageous to introduce the concept of

"complex laminar flows" which are described by the "complex velocity"

(U,V), the "complex pressure"' P, and the "complex stream function"

T, the real parts of which represent "real laminar motions":

u+U v v=-+V e__ +_+

2 , 2 2 ' 2 (5)

It is easily verified that complex laminar motions are governed by the

following "complex Navier-Stokes equations"

(rU) + _-_ U + r2-O (U -2V) (V (v+U) = p

r rr r ee r e r e - r

+ [ + u-(Uv+U + V V) + (Ue+ev)] (6)

I(rV) + -LI + IL (V cote) + _2 U IP

r rr r 2ee r2  e r"2  = 2r e

+ {U+T)Vr + U(Vr+Vr) + V + (v+U) + (Ve+8e+u+],) (7)

(Ur 2 sine)r + (Vr sine) = 0, (8)

which differ from the real Navier-Stokes equations only in their non-

linear inertial terms.

3
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Axisymmetric complex motions around conical surfaces are defined

as those solutions of the complex Navier-Stokes equations which satisfy

the symmetry condition

U(r,-e) = + U(r,+O), V(r,-O) = - V(r,+O) (9)

and the nonslip condition

r 0>, e = ±• : U = 0, v = 0 . (10)

When a complex solution is found, the corresponding real motion is

obtained by deleting the imaginary parts which have no physical meaning.

With the complex stream function T defined by

U - 1 (11)

resing r sine r

the complex Navier-Stokes equations (6) and (7) can be combined to the

single equation

E4T = M(Y) (12)

for the stream function T. The symbol E2 denotes the linear differential

operator

E2'Y = TY + coto (13)

Srr

and M' the nonlinear differential operator

14 n r2sine)3 e (r2Esin2e)r

+ T E 2 ' (E 2 T+E 2- 4 (14)
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For real stream functions * the latter nonlinear operator M reduces to

the well-known form

M(r sin[ 2sin8 r(Esine) )r I (

Since the Navier-Stokes equations are linear in their derivatives

of highest order, they may be considered as "almost linear" partial

differential equations. Hence, as was pointed out in[10] exact

solutions can be constructed in an absolutely linear manner by solving

at first the linear homogeneous Stokes equations of slow motions (16),

(17), and (18) which neglect all inertial terms of the Navier-Stokes

equations. Subsequently, a solution of the complete equations can be

found by integrating successively inhomogeneous linear equations which

result from the basic slow-motion solution. A detailed description

of the latter integration step is presented in [10]. In order to avoid

a formal repetition, only the general slow-motion integral may be con-

sidered further because it retains the exact properties of the flow

around the vertex of the conical surface (see [10]).

3. Separable Slow-motion Integrals

According to the previous section the (complex) Stokes equations

of slow motions

I(rU) + 1U + Coto -_2 2 (V +U) = -P (16)
rrr + e -r- (U2'2V) r 2 2 r

1 (rV) + V + L (V cote) + 2--U = p
rVrr +T2 r2 'e r2  e 2r e(17)

5
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can be combined to the differential equation

rrrr 2 (rr coteyrre) - 4 ('Yree - cOtOTre)
rrr r r

+ 2cote

+ Te - c + -L (8 + 3cot 2 e)Tee
r4  eeee r4  eee0 r4  0

3cotO (3 + cot 2 •e)ye 0 (18)r4

for the stream function Y. Although the differential equation (18) is

not separable in the usual sense, "separable solutions"

F = G(r)H(e) (19)

can still be found in the same generalized manner shown in [10]. A sub-

stitution of Eq. (19) into Eq. (18) leads to the equation

H/// - 2coteHf" + [8 + 3cot 2e + 2- (r2G" - 2rG')]H"
G

- [3cote(3 + cote) + cote 2 (r'G' - 2rG')]H' + r 4 
C-+G H 0, (20)

G

which splits into the three ordinary differential equations

r2 G" - 2rG' - _G-- , (21)

r 4 G""- wuG = 0 , (22)

H"" - 2cotHl/// + [8 + 3cotE + 2wl]H"

- [3(3 + cote2 ) + 2w,]coteH" + w2H = 0 (23)

where wi and u. are arbitrary complex constants.

The first two equations are of Eulerian type and can be integrated

by functions of the form

(24)
X+2G r

6
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The corresponding characteristic equations

u= ( - l)(X + 2), u2  (X - l)w(, + 1)(X + 2) (25)

yield the relationship

W= X + 1)W, (26)

between u and w2, so that they both may be replaced by the exponent k.

Since the velocity must be zero at the vertex of the conical surface,

the real part of X must fulfill the "weak regularity condition" (see

Eq. (11))

X + X > 0 . (27)

A stronger regularity condition will be required later on the basis of

a bounded pressure (see [10]).

The remaining fourth order differential equation (see [1])

HI" - 2cotOH"' + (3cot 2 9e + 2X2 + 2X + 4)H"/ - (3cot 2 e + 2 X2 + 2X + 5)coteH'

+ (X - 1)X(X + 1)(X + 2)If = 0 (28)

can be factorized in a commutative way:

cote -- + x(x - 1) - cote + (X + 1)(X + 2 H = 0. (29)
de2 dO d L 2  do

Hence, one has the two second order differential equations(X 2 -)

H' - coteH' + (X + 1)(X + 2)H = 0, (30)

H" - cotOH' + (X - I)XH = 0, (31)

which assume the simple forms

(1 - t 2 )H + (X + 1)(X + 2)H = 0, (32)

(1 - t 2 )H + (X - 1)XH = 0, (33)

where the dots denote differentiation with respect to t = cosO. The

product form (29) of the differential equation (28) is not surprising

because the differential equation (30) yields the well-known potential

7
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solutions of the same problem which represent simultaneously slow

motions.

It is easily verified that the differential equations (32) and (33)

are integrable with the aid of the first order associated Legendre

functions of first and second kind

Pi(t) = I _t P (t), Q1(t) = 1 - t
2 Q(t) ,(34)

where the corresponding degrees v = X + 1 and v = X - 1 ý 0 of the

Legendre functions PV(t) and Q,(t) may be real or complex. Thus, one

arrives at the following set of separable slow-motion integrals of the

linear differential equation (18):

= rx+2 sin[AXPi+ 1 (Cos@) + P1- (cosq) + Q 1 (cose) + DQ 1 (cose)]

(35)

for X + X > 0 and X ý 1, and

T, = r sinG[ PP (cose) + k tan + C1 Q1(cose) + D-n ] (36)

for X = 1. The coefficients AV BX' CV and DX are arbitrary complex

numbers. For vanishing coefficients BX and DX the slow motion solutions

(35) and (36) represent potential flows.

4. Symmetric Slow-motion Eigenfunctions

The separable slow-motion integrals (35) and (36) represent axi-

symmetric slow motions around a conical surface if and only if the sym-

metry condition (9) and the nonslip condition (10) are satisfied. Un-

fortunately, the Legendre functions of first and second kind P,(t) and

8
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QV (t) are generally singular at t = + 1 (9 = 0 and e = TT). Consequently,

it is more advantageous to represent the slow-motion integrals (35) by

the associated Legendre functions

in which the Legendre function of first kind 93 (t) is regular at

t = + I (e = 0) for all degrees v.

Since the Legendre function of second kind bi(t) is singular at

t = + 1 (8 = 0) for all degrees v, the "axisymmetric slow-motion eigen-

functions" of conical surfaces are of the form

= rX+2 [AXH +I (cosO) + BXH XI (CosH)] (38)

for X + T > 0 and X # 1, and

S= r 3 [A,1 (cos0) + B,(I - cose)] (39)
for X = 1. While the coefficients A and BX are complex numbers for

complex exponents X, they can be confined to real values for real ex-

ponents. The term H,(t) is used as an abbreviation for the function

H (t) = 1 -_t t!(t) = ( - t 2 ) j(t) (v ý 0). (40)

One derives from Eqs. (32) or (33) the following recurrence formula

h = n(n - 1) - v(v + 1) h (n = 1,2,3, ... ) (41)
hv'n+l = 2n(n + 1) Vn

for the coefficients of the expansion

H (t) h (l-t). (42)
V vnn

9
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After combining Eqs. (11), (16), (17), (38) and (39) one arrives

at the velocity (UX, VX) and the pressure Px (neglecting an arbitrary

pressure constant) of the slow motions (38) and (39):

U' = rX[A (cosO) + B i (cose)] , (43)
x x X+l x X-1

Vx = X + 2 rx[A H (cose) + B H (cose)] , (44)
sine X X+l x X-1

P = 4 2X + 2 rx-li (cose) , (45)
x x- X-1

for X + X > 0 and X #1, and

U, = r[A1H (cosa) - B1 ] , (46)

3r

V1 = 3r [AH 2 (cose) + B1 (I - cose)] (47)

P1  -12B, log(r cos2e (48)

for X = 1.

The behavior of the pressure functions (45) and (48) shows that the

concept of "regular flows" and "singular flows", which was introduced in

[L0] according as the pressure of the motion is bounded or unbounded,

applies also to motions around conical surfaces. In fact, one has the

following theorem for conical surfaces which is equivalent to the

corresponding theorem for dihedral angles.

THEOREM 1: Eigenfunctions of regular axisymmetric motions around

conical surfaces contain only "regular eigenvalues" X which fulfill

the "strong regularity condition"

+ > I(49)
2

10
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The term "strong" regularity condition is justified in contrast to

the notion "weak" regularity condition which was used for Eq. (27).

In opposition to other opinions (see, for instance, [5]) it was

pointed out in [7, 9,and 10] that only regular motions appear to be

physically realistic as they exhibit the features of actually observed

flows. Furthermore, in a paper in preparation it will be demonstrated

by means of compressible fluids that the acceptance of singular motions

leads to such objectionable consequences as, for instance, positive or

negative infinite densities.

The nonslip condition (10) and Eqs. (43), (44), (46), and (47)

lead to the homogeneous algebraic equations which determine the coef-

ficients A and B of the slow-motion eigenfunctions (38) and (39):
x x

A XH X+(cos8) + BX H X(cos$) = 0 (50)

A H (cos$) + B H (cosS) = 0
XX+I X X-I

for X + X > 0 and X ý 1, and

A1 H2 (cos$) + B1 (1 - cosO) = 0

Alk (cos3) - Bi = 0 
(51)

for X = 1.

With H2 (t) = (1 - t 2 )t the algebraic system (51) yields nontrivial

solutions A, and B, if and only if the corner angle 23 = 2$* satisfies

the "cosine condition"

cos21* = cos2 (52)
2

which leads to 1" 1200.

ii
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THEOREM 2: The "singular eigenvalue" X=1 of axisymmetric motions

around conical surfaces exists only for the "limiting cone" with

the cone angle 2oz* = 1200.

The critical angle of the limiting cone may be compared with the

critical angle 2(y* ;zý 1020 of the limiting wedge which was found in

[i0]. Because the limiting wedge angle is smaller than the limiting

cone angle, a cone appears to be more critical than a wedge. This

is physically plausible since the smaller "volume" of a cone causes

less displacement effects in a motion than the larger "volume" of a

wedge. As was pointed out in [9•md 10], in a fluid motion the dis-

placement effects caused by the "volumes" of a blunt wedge or cone

(2cz* < 2a,) dominate the friction effects which are caused by the

"surfaces" of the wedge or cone. At a sharp wedge or cone (2a, _< 2a*)

one observes the opposite: the "surface" friction effects exceed

the "volume" displacement effects.

The real slow-motion eigenfunction for the limiting cone

(2! -- 2o* -- 120') with the singular eigenvalue =I is (a, = real

parameter)

ýj = alr3[sinG sin2e + sin2 ] .(53)

The algebraic system (50) yields nontrivial solutions (A,,, B ) if

and only if the Wronskian determinant

W(t) = H X+I (t)k XI (t) - ix+I (t)H -I (t) (4

12
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of the two functions H + (t) and H (t) vanishes at t = cosý. Thus,

the condition

W(coso) = H +I (coss)HI(coso) - Hk+l(cosý)HX-I(coso) = 0 (55)

determines the "eigenvalues" X ý 1 of axisymnmetric slow motions around

a conical surface with the corner angle 2$.

After differentiating Eq. (54) and applying Eqs. (32) and (33) one

has

W(t)=H H -H H =2 2i + 1 H+(t)H (t). (56)

X+l X-1 X+l X-1 1 - ta X+l X-1

With W(l) = 0 the eigenvalue condition (55) becomes equivalent to the

"orthogonality relation"

W(coso) = - 2(2X + i) Hl(t)H (t) dt =0. (57)
J X+l - I1- t
cosr3

Thus, the relations (40) lead to the transformed orthogonality condition

W(cos$) - 2(2X + 1)j 131 (t) q3- (t)dt = 0 (58)

cosý

for the associated Legendre functions -- (t) and $i (t).
X+l-

THEOREM 3: The eigenvalues X ý I of axisymmetric slow motions around a

conical surface with the corner angle ý are the arithmetic means of

the degrees of those pairs of first order associated Legendre

functions of first kind 1  (t) and .l(t) which are orthogonal
X+l -

over the range coso -< t _< 1.

13



NWL REPORT NO. 1922

It is well known (see Eq. (41)) that the Legendre functions of first

kind!Pr(t) (which are regular at t = + 1 (e = 0) by definition) assume

regular properties at t = - 1 (0 = 17) and degenerate to the Legendre

polynomials P (t), if and only if the degree v is an integer. Further-

more, the first order associated Legendre functions of integral degrees

Sn)•n~n(t) = pn+l(t) and nn-I(t) Pn-(t) are orthogonal over the

range (- 1 < t :< + 1). Since their product is an even function of t

for all n, they are also orthogonal over the range (0 •< t < + 1).

Hence, the integers X = n = 2,3,4, .... are eigenvalues of axisymmetric

slow motions normal to an infinite plate (2a = 2ý = r) and parallel to

a semi-infinite thin needle (7 = rr). Vice versa, it is not difficult

to prove that the integers X = n = 2,3,4, .... are the only eigenvalues

of axisymmetric slow motions past an infinite plate and around a semi-

infinite needle. Indeed, for the infinite plate problem the analyticity

of any slow-motion eigenfunction (38) at the origin r = 0 follows from

the analyticity of the boundary conditions (see [3 and 5]). Hence, the

Legendre functions 3+ (t) and 3 X1(t) must degenerate to the Legendre

polynomials Pn+I(t) and Pnl(t) of the integral degrees X = n = 2,

3,4, ... . The same follows directly for the semi-infinite needle

problem as the eigenfunctions (38) must all vanish at the needle

e=•= .

With the eigenvalues of axisymmetric slow motions past an infinite

plate X = n = 2,3,4, .... one obtains the corresponding real eigen-

functions (an = real parameters):

14
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n+2 ppi(cose))-((0)

*n = anr n+2sin [n+l (cosP) 1  (0) Pn(coso)J (60)

n-I

The eigenvalues of axisymmetric slow motions around a semi-infinite

thin needle X = n = 2,3,4, .... lead to the corresponding real eigen-

functions (an = real parameters):

anrn+2sin@ ePnl (cose) nl 1o) 1 * (61)*n~~~ =) an Pnl(o )n-1

This result confirms the integral which was found in [9] for the same

needle problem by Taylor series expansions. In particular, one concludes

from

un 2nrcs 4 (oe- Pn+l&- 1)*1
u[n+l ) Pn-l C- 1) Pn-1l(cose

(62)

+ anrnsin2e P+l(cose) - Pn+l(- 1) Pl(cose)

- n-1

that all radial velocity components un vanish at e = 0. Hence, as was

pointed out in [9] any viscous fluid passes along an infinitely thin needle

(which has neither volume causing displacement nor surface causing

friction) in an undisturbed manner without producing any shear stress

at the needle.

Since the first order associated Legendre functions of first kind

and integral degree PI+ (t) and P1 (t) are only orthogonal over the

ranges (0 < t < 1) and (- 1 < t < + 1), one has the following theorem.

THEOREM 4: Regular integral eigenvalues X(L 1) of axisynmmetric slow

motions around a conical surface exist if and only if the conical

15
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surface degenerates to an infinite plate (2a = 20 = 17) or a semi-

infinite needle (2u = 0) in which cases all eigenvalues coincide

with the integers X = n = 2,3,4,.....

For axisymmetric slow motions around cones (0 < 2ci < 17) and into conical

corners (0 < 20 < r) the leading eigenvalues X ý I have been computed by

solving Eq. (55). This has been accomplished by truncating the series

expansion of W(cosý) after some appropriate term of N-th order in

(1 - cosO). With the recurrence formula (41) the remaining polynomial

of order (2N - 3) in X

N n

W(cosO) E - Z (1 - cosO) (n - 2j + l)h%+I jhX.ln~j+I =0 (63)
n=2 J=1

retained sufficient accuracy for the leading eigenvalues of interest.

Numerical results are presented in Tables I and 2 and in Fig. 3.

The numerical results confirm theorem 4 and show that almost all

of the slow-motion eigenfunctions of cones (0 < 2oz < TT) and of conical

corners (0 < 20 < 7) are characterized by complex eigenvalues. A

comparison with the results presented in [10] reveals that the eigen-

values of symmetric slow motions past dihedral angles and around conical

surfaces display essentially the same involved structure. In particular,

the existence of branch points shows that the eigenvalues of slow motions

around dihedral angles and conical surfaces depend on the corresponding

wedge or cone angles in a nonanalytic manner.

It is easily verified that the real eigenfunctions of slow motions

past conical surfaces, which are characterized by complex eigenvalues,

describe eddy-type flows of the same sort as the analogous eigenfunctions

16
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of slow motions around dihedral angles (see [4, 6, and 10]). However,

the general real solution,which is the real part of the linear com-

bination (see [2, 3, 5, and 11])

S= EY (64)

where the sum must be extended over all eigenvalues X with non-

negative imaginary parts, includes also the eddy-free motions of'

practical interest.

5. Note on Diffusor and Jet Flows

Since the product (29) is commutative, the complex exponents X are

symmetric to the point X - - 1/2. Hence if X is an eigenvalue of a

conical surface, which satisfies the strong regularity condition

X + X > 2 for the vertex r = 0, then p = - (X + 1) is an eigenvalue

of the same surface which fulfills the strong regularity condition

S+ • < - 4 at infinity (r = c), and vice versa. The corresponding

eigenfunction T (r,e) = rS1Y( 0 'e) represents a "regular" slow
Xr

motion which has neither sources nor sinks at infinity.

If one applies the same "inversion procedure" (see [10]) to a slow-

motion eigenfunction of a conical surface which is weakly singular at

the vertex r = 0 (0 < X + X < 2), then one arrives at a slow-motion

eigenfunction which describes a source or sink flow at infinity (r = O).

This reveals the fact that weakly singular motions around sharp cones

with angles 2o !g 2v= 1200 (see Theorem 2) are truly "singular" as

they exhibit a source or sink of infinitesimal strength at the vertex

of the cone (see [9 and 10]).

17
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The reversible inversion property-of regular motions past conical

surfaces is only unilateral for weakly singular motions. Indeed, while

the singular eigenvalue X = 1 exists only for the limiting cone with the

angle 2 - 1200, the eigenvalue p = - (X + 1) = - 2 exists for all

conical surfaces (0 < 2u < 2,0. The corresponding slow-motion eigen-

function is (a-, real parameter)

*-2 = 2a 2(cose - l)[(cose + l)cose - (3co&2 B - 1)], (65)

which differs from Ackerberg's solution presented in [1] by an additive

constant that adjusts the stream function -42 (r,8) to the conventional

condition *- 2 (r,O) _ 0. It may be noted that the slow-motion eigen-

function (65) excludes the possibility of Ackerberg's non-existence paradox

for the infinite flat plate (2oz = 2$ = IT). In fact, the general solution

T of the complex Navier-Stokes equation (12), which is bounded at r =

is of the form (see [10])

Y = 'Y9(r,e) + YM(r,e) (66)

where YS is the general solution of the analogous slow-motion problem

containing the r-independent eigenfunction (65) and all eigenfunctions

that are regular at r = •. Accordingly, Ackerberg's solution (see [1])

is in error because the function T M(r,e), which adjusts Ts to a solution

of the full Navier-Stokes equation (12), cannot degenerate to a finite

sum, unless it vanishes identically together with TS = 0 (see [10]).

Furthermore, Ackerberg based his solution only on the slow-motion

solution (65) and failed to observe the existence of an infinite number

of slow-motion eigenfunctions which are all regular at r = -. As was

pointed out in [10] for 0 < 2 a < TT and 0 < 2ý < TT the function YM
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contains only terms of the separable form (38) because the eigenvalues

P - (X + 1) constitute an arithmetic progression only for 2c? = 0 and

2a 2P = T- (see Theorem 4). In the latter case the fundamental system

of separable slow-motion solutions (38) must be extended by the so-

called "associated" separable slow-motion solutions of order m

m _ m
T m = 6m (m = 1, 2, 3, ... ), (67)

?, XmX

which were introduced in [10].

For example, the associated separable solution of first order is

of the form (see Eq. (38)):

I = r +log r[AlI H (cose) + B H (cose)]
X Xl X-1

(68)

+ rX+ 2 [A' - H (cose) + B1 
- H (cose)].

XX X+l XX X-1

In general, the solutions (67) involve the functions (log r)m

(m = 0, 0, 2, ... ) and the "associated functions"

m
H 2--= H (cose) (m = 1, 2, 3, .... )) .(69)

The latter functions satisfy the recurrence relation (m = 1, 2, 3, ... )

(l-t 2 )Hm + V(v+l)Hm + m(2v+l)Hm- + m(m-l)Hm-2 = 0 . (70)

For instance, the first order associated function H (t) is a particular
V

solution of the inhomogeneous differential equation

(l-t2)HI + v(v+l)H = - (2v+l)H , (71)

which is regular at t = 1. Since the inhomogeneous portion of Eq. (71)

1is a homogeneous solution of the reduced equation, no solution HI

degenerates to a polynomial even if the exponent v is an integer.

Nevertheless, an exact solution can be found in the form

19



NWL REPORT NO. 1922

H = S Il(t) + H (t) log(l+t) (V ý 0, - 1), (72)
V V lvi V~

1
in which S reduces to a polynomial of order n =(Iv + 1/21 - 1/2)if the

exponent v is an integer v = 1, ± 2, ± 3, .... After substituting

Eq. (72) into Eq. (71) and applying Eq. (40)one arrives at the dif-

ferential equation (v v 0, -0)

(l VS + v(v+l)S~

-- 2~ ~ 2,• 2ltE•v''~• 2!•½+)t.-l--,1"-). (73)

in which for v = 1, ± 2, ± 3, ... the inhomogeneous portion reduces

to a polynomial of order n =(Iv + 1/21 - 1/2) which is lower than the

order of the homogeneous polynomial solution H (t). Hence, the dif-

ferential equation (73) yields, indeed, a polynomial solution of the

order stated above.

According to these derivations the general solution of the full

Navier-Stokes equations, which describes laminar motions along an

infinite flat plate (2a, = 21 = TT) with an orifice at the origin

r = 0 and with a source or sink of finite strength at infinity

(r - n), is of the form (see [10]):

C X r8,• 2-n n-2
Z n F (0)(log r) (74)

n-2 -n n j=o

After some algebra one arrives at the following two leading terms of the

asymptotic expansion (74) (a- 2 and a-3 are real parameters):

0-2 = t2 = 2a. 2 (t 3 - 1) (t = cose), (75)

9t l+t
0-3 -(lt)L(l+t)(a_3+9a2 2 log - ) - a2 (3+2t+2 . (76)

20



NWL REPORT NO. 1922

It may be noted that the analogous needle (2g = 0) and limiting cone

(2a - 2(y = 1200) problems, which also seem to have caused certain dif-

ficulties in Ackerberg's investigations [1], are solvable without the

knowledge of the associated separable slow-motion solutions (67).

Since the slow-motion solution (65) is the leading term in any

asymptotic expansion of a laminar flow along a conical surface with an

orifice at the vertex r = 0 and a source and sink distribution of finite

strength at r = -, it is useful to investigate the corresponding flow

pattern. As the velocity components

= 6a. 2 I (cos 2 e - cos 2 3), v..2  0 (77)u-2 =

show, one has a strictly radial diffusor-type flow for all corner angles

0 < 2ý < TT (see Fig. 4a). However, for all cone angles 0 < 2 01 < TT the

motion assumes the character of a jet-type flow as shown in Fig. 4b. In

the limiting case of the semi-infinite needle 2 a = 0 the motion is again

of the diffusor type. A comparison with the analogous result presented

in [10] reveals that the velocities of plane and axisymmetric diffusor and

jet flows with radial stream lines depend on the polar angle e in exactly

the same manner. While the complete Navier-Stokes equations yield a so-

lution which represents a strictly radial diffusor or jet flow in the

plane case (see the Jeffery - Hamel solution in [8 and 10]), no such

integral exists in the axisymmetric case.

For exact solutions of the Navier-Stokes equations of the form

= rF(e) see the papers of H. B. Squire [12 and 13]
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Fig. 2: Axisynimetric flow into a conical corner
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b. Radial jet-type flow for 0 < 2cv < TT



APPENDIX C



NWL REPORT NO. 1922

DISTRIBUTION

Bureau of Naval Weapons
DLI-3 1
R-14 1
R-12 I
RR-I1 1
RREN 1

RRE 1
RRRE-4 1
RT 1
RM 1
RM-12 1

Special Projects Office
Department of the Navy
Washington 25, D. C.

SP-20 4
SP-43 2

Defense Documentation Center
Cameron Station
Alexandria, Virginia 20

Commanding General, Aberdeen Proving Ground
Aberdeen, Maryland

Attn: Technical Information Section
Development and Proof Services 2

Commander, Operational and Development Force
U. S. Atlantic Fleet, U. S. Naval Base
Norfolk 11, Virginia 1

Chief of Naval Research
Department of the Navy
Washington 25, D. C.

Attn: Dr. F. J. Weyl I
Attn: Code 438 2
Attn: Mathematical Sciences Division I
Attn: Mathematics Branch 1
Attn: Fluid Dynamics Branch I

Director, Naval Research Laboratory
Washington 25, D. C. 3



NWL REPORT NO. 1922

Com•nander, Naval Ordnance Laboratory
White Oak, Maryland

Attn: Dr. R. Roberts 1
Attn: Dr. R. E. Wilson 2
Attn: Dr. A. VanTuyl 1
Attn: Technical Library 1

Chief, Bureau of Ships
Department of the Navy
Washington 25, D. C. 2

Director, David Taylor Model Basin
Washington 7, D. C.

Attn: Dr. F. Frenkiel 1
Attn: Dr. H. Polachek 1
Attn: Library 2

Commander, U. S. Naval Ordnance Test Station
China Lake, California

Attn: Dr. D. E. Zilmer I
Attn: Library 2

Superintendent, U. S. Naval Postgraduate School
Monterey, California

Attn: Library, Technical Reports Section 1

Director of the Institute of Naval Studies
185 Alewife Brook Parkway
Cambridge 38, Massachusetts 1

Commanding General, White Sands Proving Ground
Las Cruces, New Mexico

Attn: Flight Determination Laboratory

Commander, 3206th Test Group
Eglin Air Force Base, Florida

Attn: Mr. H. L. Adams 1

Wright Air Development Center
Wright-Patterson Air Force Base
Dayton, Ohio

Attn: WCRRN-4 1
Attn: Dr. K. G. Guderley I

U. S. Atomic Energy Commission
Washington, D. C.

Attn: Technical Library

2



NWL REPORT NO. 1922

Los Alamos Scientific Laboratory
Los Alamos, New Mexico 2

Superintendent, U. S. Naval Academy
Annapolis, Maryland

Attn: Dept. of Mathematics I
Attn: Library 1

U. S. Naval Observatory
Washington 25, D. C.

Attn: Dr. K. Aa. Strand I

U. S. Weather Bureau
Washington 25, D. C.

Attn: Dr. J. Smagorinsky I

Commander, Naval Ordnance Test Station
Pasadena Annex
3202 Foothill Boulevard
Pasadena, California 1

Commander, Ballistic Missile Division
ARDC P. 0. Box 262
Inglewood, California

Attn: Col. Ebelke (WDTVR) 2

Commanding General, Army Ballistic Missile Agency
Redstone Arsenal
Huntsville, Alabama

Attn: Mr. H. G. Paul (ORDAB - DS) 1
Attn: Dr. W. Lucas (ORDAB - DS) 1
Attn: Mr. Dale L. Burrows (ORDAB - DSDA) 1
Attn: Technical Library 1

National Science Foundation
1520 H. Street, N. W.
Washington, D. C.

Attn: Engineering Sciences Division 1
Attn: Mathematical Sciences Division I

Director, National Bureau of Standards
Washington 25, D. C.

Attn: Dr. Phillip Davis 1
Attn: Dr. E. W. Cannon 1
Attn: Dr. R. J. Arms 1
Attn: Fluid Mechanics Division 1
Attn: Technical Library 1

3



NWL REPORT NO. 1922

Office of Technical Services
Department of Commerce
Washington 25, D. C. 1

Dr. A. Busemann
Langley Research Center
Langley Field, Va. 1

Prof. Nicholas Rott
Institute Aerospace Science
Los Angeles, California 1

National Aeronautics and Space Administration
1520 H. Street, N. W.
Washington 25, D. C. 6

National Aeronautics and Space Administration
Ames Research Center
Moffett Field, California

Attn: E. Dale Martin, Theoretical Branch 1

National Aeronautics and Space Administration
George G. Marshall Space Flight Center
Huntsville, Alabama

Attn: Ernst W. Adams, M-AKRO-AF 1

Prof. F. K. Moore
Cornell Aeronautical Lab., Inc.
Cornell University
Buffalo 21, New York 1

Guggenheim Aeronautical Laboratory
California Institute of Technology
Pasadena 4, California

Attn: Prof. Lester Lees 1
Attn: Prof. J. D. Cole 1

California Institute of Technology
YArmAn Laboratory
Pasadena 4, California

Attn: Prof. T. Y. Wu 1
Attn: Library 1

University of California
Berkeley 4, California

Attn: Department of Mathematics

4



NWL REPORT NO. 1922

Prof. J. J. Stoker
Courant Inst. of Math. Sciences
New York University
New York 3, New York

Harvard University
Cambridge 38, Massachusetts

Attn: Prof. G. Birkhoff 1
Attn: Prof. G. F. Carrier 1
Attn: Prof. H. M. Stommel 1

University of Maryland
College Park, Maryland

Attn: Prof. J. M. Burgers 1
Attn: Prof. J. Weske 1
Attn: Prof. S. Pai 1
Attn: Inst. for Fluid Dynamics and Appl. Mathematics 1

Massachusetts Institute of Technology
Cambridge, Massachusetts

Attn: Prof. C. C. Lin 1
Attn: Prof. A. H. Shapiro 1
Attn: Prof. J. G. Charney I

Prof. S. Corrsin
The Johns Hopkins University
Baltimore 18, Maryland

Prof. W. R. Sears
Cornell University
Ithaca, New York

Applied Physics Laboratory
Johns Hopkins University
Silver Spring, Maryland

Attn: Library 2

Prof. W. H. Munk
University of California
San Diego, California 1

Prof. W. Squire
West Virginia University
Morgantown, W. Va. 1

Prof. M. Z. v.Krzywoblocki
Michigan State University
College of Applied Science
East Lansing, Michigan 1

5



NWL REPORT NO. 1922

Prof. H. Riehl
Colorado State University
Dept. of Atmospheric Science
Fort Collins, Colorado

Mathematics Research Center
University of Wisconsin
Madison 6, Wisconsin

Attn: Library

Prof. D. M. Young
University of Texas
Austin, Texas

Prof. John W. Carr, III
University of North Carolina
Chapel Hill, North Carolina

Mathematics Department
George Washington University
Washington, D. C.

Brown University
Providence, Rhode Island

Attn: Prof. W. Prager 1
Attn: Prof. R. F. Probstein 1
Attn: Prof. J. Kestin 1

Stanford University
Stanford, California

Attn: Prof. M. Van Dyke 1
Attn: Prof. Fliigge-Lotz 1

Prof. T. Ranov
State University of New York
Buffalo 14, New York

Prof. Simon Ostrach
Case Institute of Technology
Cleveland 6, Ohio

Prof. J. W. Delleur
Purdue University
Lafayette, Indiana

Prof. J. Siekmann
University of Florida
Gainesville, Florida

6



NWL REPORT NO. 1922

Dr. L. M. Mack
Jet Propulsion Laboratory
California Institute of Technology
Pasadena, California 1

Prof. W. D. Hayes
Princeton University
Princeton, N. J. 1

AVCO Manufacturing Corporation
201 Lowell Street
Wilmington, Massachusetts

Attn: J. P. Wamser
Via: INSMAT, Boston, Massachusetts 2

Lockheed Aircraft Corporation
Palo Alto, California

Attn: Dr. W. C. Griffith 1

Ramo-Wooldridge Corporation
8820 Bellanca Avenue
Los Angeles 25, California 1

Hydronautics, Inc.
Laurel, Maryland

Attn: Mr. P. Eisenberg 1

General Electric Company
Schenectady 5, New York

Attn: Main Library 1

Dr. S. Traugott
Research Department
Martin Marietta Corporation
Baltimore 3, Maryland

Dr. Bernd Zondek
Computer Usage Company, Inc.
655 Madison Avenue
New York, New York

Dr. C. C. Bramble
145 Monticello
Annapolis, Maryland

*Dr. M. J. Lighthill

Royal Aircraft Establishment
Farnborough, Hampshire, England

*All foreign addressees VIA: BUWEPS (DSC-3)

7



NWL REPORT NO. 1922

Prof. G. K. Batchelor
University of Cambridge
Cambridge, England

"Prof. C. R. Illingworth
University of Mlanchester
Manchester, England 1

"Prof. K. Stewartson
University of Durham
Durham. Great Britain

7Prof. H. B. Squire
Imp. College of Science and Technology
London, S.W. 7, England

*Prof. L. Rosenhead
University of Liverpool
Liverpool, England

*Prof. A. Thom

University of Oxford
Oxford, England

"Prof. John L. Synge
Dublin Institute for Advanced Studies
Dublin, Ireland

"Mr. Andre Roudil
European Computing Center
Compagnie IBM France
5, Place Vendome
Paris 1, France

"Technische Hochschule Aachen
Aachen, Germany

Attn: Prof. Dr. A. Naumann 1
Attn: Prof. Dr. F. Schultz-Grunow 1

Prof. Dr. H. Goertler
University of Freiburg
Freiburg, Germany

*Prof. Dr. H. Schlichting

Technische Hochschule
Braunschweig, Germany

*All foreign addressees VIA: BUWEPS (DSC-3)

8



NWL REPORT NO. 1922

*Prof. Dr. W. Tollmien

Max Planck Institute
Goettingen, Germany 1

"Prof. C. Ferrari
Polytechnic
Castella del Valentino
Turin, Italy

"*Prof. John W. Miles

Australian National. University
Canberra, Australia

Local:
D 1
K 1
K-1 1
K-3 1
K-4 1
KXK 1

KXF 1
KXH 1
KXCR 1

KYD 2
KKL 50
KYS 50
ACL 5
File 1

All foreign addressees VIA: BUWEPS (DSC-3)

9



0W
o U -4 0

0 0

a-

o uI)

LLL w

00 )-4 _

z4

2 0

F-S.

U -0

z

o M. 0 0 j 0

-- m
o -

-1 - (f) o

zin

a..m

u~u

U) . a Z J LZ

0 0
a. 

tj

Ln , D- -0 1 0 .. Q. 0

>-Lz ar C o k k 1
1= 01"0 u Cd 4 0 -) r- 4-

no IL 0 :3 c 1 c u-a: o.... ZJ Cl) > U) LQ W
IL



i-4

00 Ca g 0 m C 0
,4 C- i -ý 02.1 E -

$~ 0 4i N 4 0 N- CN
-4-'-I 0 4 Af - 4-4 o. . .cfl
5~- 44 -- *3 04'-4 to H 1 0

i-I-H 0) O W0 - -4-- wa OX 02 -4

~44d -. I - 00~H d 0H0 0 00
:j ~ 1~- cc > s44414C"0 H

P4 0 0 > 24000 . U 0.4-A00> Wd 4CO -4 4OC S J * O 00 rH0-HO OH- r- 40 = 0-HOýjQ4J (1C 0-H 00-9- (nO -4 t
Ea w 14 Cr4. 00 - 0i V) 02n.44 CJrW&J3.0 0 -4- 0 CO)

.A-cato--4 wo ý W1- H1 cd cd -ý02- u .-I Hý Ea
C> .- < L CA

0 o -H rk - 0 Crd 4 0- c. 0) 0 a

i-IN fl' H4H H , CfltH H U3 " 024,

oi 0A to 0 0 C 02
H w0-. 1 :3 H- . 4 ZwZ4

0 Z0) 43 H 0.0to0GO 0 00 a) H 0.004
43 CO w C C: 0 9 4 -4 CO W0 0

bo 00 - 0 0 020 E- 0 .00- 0 O 0 00 -4
04 1 4J r. H--c 401 1--Hgco 0 00( 0(
Hn- 10 r. -4 CL- 002 0 4 Z -It

02"do V .44430> F-4 I- O .440
H Cow 00

OCO-t~~' r40-. OC- 04C-0coH4> 44 H HO-H3
400 0 U4J %- V 4J0 0 4

04 P0 N4 a) 0 En N W a X0 00"01 5 >> CC-02 " 02 Q >14 C40 w00
0d 0 41 10 0l CO 4* 2 A i 40

,4 ý4 . A0 H "-4 00-A )0).
0 sw 02-140 94 NO' 02H400
H0- Uý ca -Hp la-U

02 1-1 -H 2 2034 0 Q-1 >H0020a) 43

0 Hm w440.wac ý 0021.
0 - ,40 A V) H-0 &0 0 W 404

0 O 4J 020 -H 42j- -i CO 002 dH

<CL -40 Cd >N42.0m<0 0 "to anOHrd 020 0w 0 0H0"d0

HH - 4-!ii 4-
H. 0 4 N , 0 N1 V4 0 H 1 N"dO 1. 0 - do 4 0)

04- -4H0 u I~ O H

4-I-d 0H0 -0 0gom 00 d 8-~ 0H0 - 0 (AC 0

44 1ý.r- 0 0 13 .2-
SOC cc g0o'0 002 " "Co 'A0

02.404. 0 H0 wO0141030 0- 0 C O4
HO4 H 0. Cfl- Hý CL CO0 2H 04 I C

Lm ON Co - - 0- >0. -ANPCO

o4 -H -1 Go0 :3 Ga -H - o
4J P - =- r- -HH 42 W H 02P

0 0 0 0)24" ý n 1 0 0 Q) 41 n

- w w 4 H 0000 -L 0020 H4 00000 4 X

XN CO " oW- C-H cu CO Ed 0-4 C-/)
> 43 CO W 0.0 0 43 COO 4/

a, V"- p-i 04C< . r14)40 4 4

.. .~d .r :.1 0 0c0404C- H-Cl 1- H gg -H 0- H-HC rp 000-1.4

0 a Id- -Ho 0 02~ 00 03- -HOa( 0 0)-
0"d U4 4J 4 H.'- O~4 43

Z 000 00 .4 0 CO 0

443 - Q-) CdC4 CA - QH d
A, co 0. E4 02 r. C 0 0440 3

02 0> QC320" 02 0>4 to4 0D:
E, 0 00 F -HriC -H 0 00 w-H-tH;COO0 p-H

3tO .140." 0) A4 CO -A _4 0) 02
.0 H w"4 005 . 0) Ha "4 w0.

w0t2 "C' '- 14r.00H 02 >COU'T -4140 0 0`4to4 NO 4-14O C>6 z d H0- 2Ia'4O
4100 0 )> H> 0v- 1 >3 41 >4

0 ~ ~ 4 w04> 1 0 40i 00H> 14JZ
go 4CO -4 4)

3  
& 0 30J ý1a

CA~ OO-H2'- C- COU 0 00 C -H 044
ON 0 t HO p I0X w d c0 >> H X-00Q)9)

2.1 w0 to md >N . <02 0t "a

020 04t "4 0
4 4 

. C d 00' 0H C04I-4a)w 0--

Go- H 00 - O0 0 2 a) 00 -1H)O-4m 0.w 004


